Tag Archives: 머신러닝

임상 빅데이터와 딥러닝(Deep Learning)을 활용한 연구와 고려사항

2년전부터 임상 빅데이터에 딥러닝 (Deep Learning) 기술을 접목하여 준비했던 논문이 있는데, 최근에 미국 심장학회 (American Heart Association)에서 발간하는 Stroke 지에 게제 승인이 나서, 관련된 내용을 정리하는 포스팅을 남길까 합니다. 의료 정보 빅데이터에 기계 학습 (Machine Learning) 기술을 활용하여 발표 하였던 저희의 첫번째 논문에서는 800명 정도의 환자 데이터를 이용하였는데, 당시 논문은 DIC 진단에 대해 기존 방법에 비해 진단 정확도를 높일 수는

더 보기

의학 연구를 위한 기계학습: Supervised learning의 연구 설계 구조

  이번 학기 마지막 대학원 수업으로 ‘인공지능과 의학 응용’이라는 과목을 수강 중입니다. 수강 인원을 보면, 얼마나 많은 임상 선생님들이 인공지능 (Artificial Intelligence)을 이용하여 의학 연구에 응용하는 것에 관심이 많은지 알수 있었습니다. 학기가 다 끝나지는 않았지만, 안타깝게도 강의 교수님이 통계학과 선생님이라 그런지 수업을 신청한 임상 선생님들의 요구(Needs)와 수준을 제대로 파악하지 못한 듯 합니다. 대학원 수업에 대한 약간의 답답함이 생겨, 의사들의 입장에서

더 보기

아미노산 치환의 효과 예측: In silico tool의 원리와 종류

앞선 포스팅에서 언급했듯이, 단일염기변이 (SNV)에 의해 코딩하는 아미노산의 바뀌면 (missense variant) 단백질의 기능에도 영향을 주게 됩니다. 이때, 치환되는 아미노산이 단백질 구조와 기능에 영향을 미치는 정도에 따라서 그 효과가 거의 없을수도 있고, 단백질의 기능 자체를 항진시키거나 (gain of function; 드물게) 또는 감소시키게 됩니다 (loss of function). 오늘은 이러한 아미노산 치환에 따른 단백질 기능을 예측하는 컴퓨터 알고리즘 도구들 (In silico tools)의 원리와

더 보기