NGS 타깃 시퀀싱 패널 검사의 분석 및 해석시 고려할 사항

지난 포스팅에서는 임상의의 입장에서 NGS 검사를 통한 변이의 해석을 이해하기 위한 기초적인 내용들을 언급했습니다.

<관련 포스팅 보기>

임상의를 위한 NGS 레포트 해석의 이해

NGS 검사: Whole Genome & Exome, Targeted Sequencing 비교

그러나, 언급된 내용들이 기초적이고 많이 부족하다고 느껴, 이번 포스팅에서는 타깃 시퀀싱 패널의 분석시 고려할 내용 및 팁 등을 언급해 보고자 합니다.

1) 검사 데이터의 Quality check: 사실 환자를 보는 의사의 입장에서는 최종 결과만 확인하기 때문에 가장 간과하기 쉬운 단계입니다. 그러나 본인이 직접 데이터를 분석하고 해석하고자 한다면, 가장 중요한 단계입니다. 확인해야할 여러 파라미터들이 있습니다만, 가장 기본적으로 target region의 coverage 및 depth를 확인해야합니다. 이는 우리가 검사하고자 하는 영역을 타깃 시퀀싱 패널이 얼마나 잘 디자인되어 검출하는지를 나타내주는 지표입니다. 경우에 따라 다르지만, 일반적으로 100X 이상의 depth로 원하는 영역의 99% 이상 커버(100X over target ratio > 99%)한다면 디자인이 매우 잘된 것으로 생각할 수 있습니다.

doc-1024x216

1
매우 잘 디자인된 타깃 시퀀싱 패널의 성능 결과 예: 평균 depth도 매우 많고, 원하는 영역을 골고루 잘 커버하는 것을 알 수 있다.

2) 검출된 변이가 true signal인가? false positive 인가?: 위와 같이 잘 디자인된 시퀀싱 패널이라 하더라도, micro-insertion 또는 deletion이 일어나는 경우에는 reference 패널과 read의 시퀀스 차이가 크기 때문에 엉뚱한 곳에 가서 read가 붙는 일이 일어날 수 있습니다. 그 결과 엉뚱한 위양성 변이가 검출되기도 합니다.

따라서 임상적으로 중요한 변이가 검출된 경우에는 (특히 frameshift mutation), 실제로 해당 변이를 IGV 와 같은 genome viewer를 통해서 직접 눈으로 확인해보는 것이 중요합니다.

2
국내의 모 NGS 검사 업체에서 전달받은 결과에서 보고한 한 환자의 검체에서 무더기로 검출된 변이. 검출된 변이의 빈도가 1% 정도로 매우 적기 때문에 noise signal로 판단할 수 있었지만, 이렇게 작은 빈도라 하더라도 somatic mutation을 타깃으로 하는 cancer panel이었다고 하면 이야기는 완전히 달라집니다.
Mutation-visualization-in-the-Integrative-Genomics-Viewer-IGV-browser-showing
경우에 따라서는 위와 같이 IGV를 통해 실제로 deletion 된 영역이 있고, read들이 올바르게 달라붙었는지를 눈으로 직접 확인해보는 것도 필요합니다.

3) 검사 목적에 따른 변이의 filter 전략: 타깃 시퀀싱 패널은 크게 2가지 유전 질환과 관련하여 생식 세포 돌연변이 (germ-line mutation) 또는 de novo mutation을 검출하거나 암 환자에서 체세포 돌연변이 (somatic mutation)을 검출할 목적으로 디자인됩니다. 이 두 가지는 구분하여 NGS 검사에서 검출된 변이를 적절하게 필터링하는 전략이 필요합니다.

<관련 포스팅 보기> 유전학 중요개념 정리: Germline vs. Somatic mutation

Germ-line의 경우에는 부모로 부터 한쌍씩 유전형을 물려받기 때문에 검출되는 변이의 상대 빈도는 ~50% 또는 ~100%일 수 밖에 없습니다. 반면, 암 세포의 경우에는 다양한 변이들이 섞여 있기 때문에 (tumor heterogeneity) 다양한 상대 빈도로 검출이 됩니다. 따라서, 변이를 필터링할 경우, 이러한 점을 염두해 두고 환자들에서 의미있는 병적 변이들을 검출하게 됩니다.

4) 집단 내 변이 빈도에 따른 filter 전략: 매우 드문 희긔 유전 질환의 변이를 검출하고자 하는 경우, 해당 변이의 집단 내 변이 빈도에 따라 필터링하는 전략도 유효합니다. 1000 Genome project 또는 ExAC과 같은 유전체 database는 인구 집단에서 해당 변이의 빈도에 대한 정보를 제공해주기 때문에, 이미 알려진 변이 빈도를 기반으로 인구 집단에서 흔하게 존재하는 변이(1% 이상)는 필터링하고 남은 변이들을 대상으로 임상적 평가를 확인하는 것이 좋습니다.

변이빈도와 효과 크기
일반적으로 희긔 유전질환의 경우에는 집단 내 변이 빈도가 매우 작고, 효과 크기가 큰 변이에 의해 유발되는 것으로 생각되고 있기 때문에, NGS 검사를 통해 검출된 흔한 변이들은 크게 임상적인 의미가 없는 경우가 많습니다.

5) 유전체 데이터 베이스를 활용한 Clinical annotation: 최근 다양한 생명정보학 및 유전체 툴들이 개발되어 검출된 변이의 특성 및 정보들을 자동으로 처리해주고 있습니다. 이러한 툴들을 보조적으로 잘 활용하면 변이 판독에 소요되는 시간을 최소화하면서, 동시에 효과적으로 판정할 수 있습니다. 그러나, 경우에 따라서 이러한 판정들이 항상 옳은 것은 아니기 때문에 변이의 판정 및 판독에는 다양한 경험을 바탕으로 한 전문가의 수기 판독이 필요하게 됩니다.

가장 대표적으로 많이 사용되는 툴은 Annovar이며, annovar 내에서도 다양한 툴들이 존재하기 때문에, 사용자가 필요에 따라 이를 선택할 수 있습니다.

Annovar 홈페이지 방문하기

글쓴이: Jihoon Yoon

인체라는 소우주를 탐험하는 호기심 많은 연구자

답글 남기기

아래 항목을 채우거나 오른쪽 아이콘 중 하나를 클릭하여 로그 인 하세요:

WordPress.com 로고

WordPress.com의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Google photo

Google의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Twitter 사진

Twitter의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Facebook 사진

Facebook의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

%s에 연결하는 중