휴먼 게놈 프로젝트, 그 이후.. 그리고 정밀 의료시대까지

Hx of HGP
The landscape of Human Genome Project (National Human Genome Research Institute 에서 발췌)

인간 게놈 프로젝트 (Human Genome Project; HGP)는 인간의 모든 유전자 염기 서열을 밝히는 것을 목표로 1990년 처음 시작되었습니다. 그리고 당초 목표보다 2년 빠른 2003년도에 목표를 완수하게 되었죠. 이 당시만 해도, 인간의 유전체 암호가 모두 해독되어서 마치 모든 유전병을 정복가능하게 될 거라고 기대가 매우 컸습니다. 그렇지만 당시의 기대와 흥분도 잠시, 지금까지 무려 14년이 흘렀지만 아직도 게놈 프로젝트는 현재 진행형입니다. 이번 글에서는 게놈 프로젝트의 역사와 의의, 그리고 앞으로 유전체 연구 진행 방향에 대해서 논의해 보겠습니다.

사실 게놈 프로젝트를 말하는데 있어서, 염기서열 분석 기술의 발전을 떼놓고는 말하기가 어렵습니다. 하지만 각 세부적인 분석 기술 소개하는 것 만으로도 엄청난 분량이 되어버리므로, 이번 글에서는 간단히만 언급하겠습니다.

Frederick-Sanger-and-a-DN-009
1958년 노벨 화학상 수상자, Frederick Sanger (1918 – 2013). 그의 이름을 딴 생거 시퀀싱 방법은 아직까지도 염기 서열 분석 방법의 고전적 분석 표준(Gold standard)으로 인정받고 있습니다.

유전자의 염기 서열을 분석하는 가장 고전적인 방법은 생거 시퀀싱(Sanger sequencing)법 입니다. 영국의 생화학자였던 프레데릭 생거에 개발된 방법은 아직까지도 염기 서열 분석의 표준 방법(Gold standard)로 인정되고 있습니다. 그러나 기술의 발전으로 점점 더 빠르고 정확하게, 대용량의 유전 정보를 시퀀싱하는 것이 가능하게 되었고, 최근에는 이를 두고 차세대 염기 서열 분석법 (Next-generation sequencing, NGS) 라고 부르고 있습니다. 사실 우리는 이미 NGS의 시대에 살고 있기 때문에 엄밀한 의미에서 차세대 라는 말은 맞지 않습니다. 따라서 일부에서는 3세대 염기서열 분석 (Third generation sequencing, TGS) 또는 대용량 염기 서열 분석 (Massively parallel sequencing, MPS)라고 부르기도 합니다. 하지만, 편의상 널리 NGS로 통용되고 있습니다. 예전에는 염기 서열을 밝히는데 수년이 걸렸던 인간 게놈 프로젝트도, NGS 기술의 발달로 이 글을 작성하는 지금도 매우 저렴한 가격에 며칠이면 가능해졌으며, 소요 시간과 가격은 점점 감소하고 있습니다. 그렇다면 이렇게 저렴해진 유전체 서열 분석 기술이 의미하는 바는 무엇일까요?

costs_plummeting_x9001.jpg
2000년대 초, 백만불이었던 전체 유전체 분석 가격은 2017년 현재 이미 1,000불 아래로 떨어졌습니다. 즉, 개인이 100만원의 비용이면 본인의 모든 염기 서열 정보를 알 수 있는 시대에 도달했다는 의미가 됩니다.

사실 인간 게놈 프로젝트 이후에 진행된 프로젝트는 1000 게놈 프로젝트 (1000 Genome Project)가 있습니다. 1000 게놈 프로젝트는 1000명의 사람들의 전체 유전체를 분석해서 서로 차이를 보이는 염기 서열에 무엇이 있고, 이것이 개인마다 어떻게 다름으로써 개인별 특징을 나타내는지를 찾고자하는 첫 시도였다고 볼 수 있죠. 그리고 현재 알게된 사실은 사람들은 무수히 다른 단일 유전자 변이 (Single Nucleotide Variant, SNV)를 가지고 있으며, 이러한 SNV가 각기 어떻게 작용을 해서 서로 다른 형질을 보내는지에 연구의 포커스가 맞춰진 상태입니다. 인간이 가지고 있는 형질과 질병은 무수히 많습니다. 그리고 인간의 유전체도 SNV를 포함해서 매우 다양하며, 무궁 무진한 상호 작용과 조절을 받고 있습니다. 즉, 인간 게놈 프로젝트 초기에 기대했던 목적을 완전히 이수하려면 이러한 모든 유전체의 발현과 조절, 그리고 개개인의 유전 정보와의 관계를 밝히는 것이 필수라는 것이죠. 1000명에서 시작된 프로젝트는 이제 나라와 인종별로 10만명, 100만명 수준으로 확대되고 있으며, 앞서 언급한 유전체와 형질간의 관계를 확인하기 위한 데이터 수집 과정입니다.

즉 앞으로의 유전체 프로젝트와 연구 방향은 이러한 형질 또는 질병과 유전 정보 간의 관계를 파헤치는데 집중될 것입니다. 유전자 지도 완성 뿐 아니라, 유전자 지도 안의 각 위치가 어떠한 역할을 하고, 어떤 형질과 질병을 일으키는지 완벽하게 이해를 해야한 엄밀한 의미의 정밀 의료가 실현 가능하다는 것이죠.  유전체 정보는 매우 방대하고, 이를 분석하는데는 매우 많은 시간과 노력이 필요합니다. 따라서 뒤이어 발전하게 된 것이 이러한 유전 정보를 분석하는 생물 정보학 (Bioinformatics)입니다. 더 나아가 최근에는 이러한 유전 정보를 빅데이터로 간주하여, 인공지능 방법론을 활발하게 적용하고 있는 상황입니다. 정밀 의료를 논의하는데 있어, 유전학, 생물 정보학, 그리고 인공 지능 등을 함께 이해할 필요가 있는 대목입니다.

2-DNA-computer
유전 정보 데이터를 바탕으로 한 정밀 의료 를 실현하기 위해서는 생물 정보학과 같은 분석 도구가 필수적이며, 유전체 데이터가 매우 크기 때문에 이를 효과적으로 처리하기 위해 빅데이터와 인공 지능 기술 적용이 크게 각광 받고 있습니다.

궁극적으로 정밀 의료 시대에는 모든 개인이 자신의 유전 정보를 보유하게 될 것이고, 앞에서 알게된 지식을 바탕으로 사는 시대에 있게 될 것입니다. 그리고 지금은 연구자들이 그러한 지식의 틈을 메꿔가는 과정이라고 볼 수 있겠죠.

유전 정보 분석 및 생물 정보학, 그리고 빅 데이터와 인공지능. 각각의 세부적인 내용은 나중에 더 자세히 알아보도록 하고 이번 글은 여기서 마치겠습니다.

글쓴이: Jihoon Yoon

인체라는 소우주를 탐험하는 호기심 많은 연구자

답글 남기기

아래 항목을 채우거나 오른쪽 아이콘 중 하나를 클릭하여 로그 인 하세요:

WordPress.com 로고

WordPress.com의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Google photo

Google의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Twitter 사진

Twitter의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

Facebook 사진

Facebook의 계정을 사용하여 댓글을 남깁니다. 로그아웃 /  변경 )

%s에 연결하는 중